The intention was good: smartphone manufacturers slowed down older models in order to accommodate aging batteries and prevent these phones from shutting down unexpectedly.But there was still customer backlash. One issue was, customers didn’t have access to detailed battery information. This incident shows how essential it is to provide consumers reliable information about the health of their device batteries.

Managing Aged Batteries Can Be Easy

The lithium-ion batteries powering most of our mobile devices can degrade over time. They lose capacity and the internal impedance goes up. In an aged battery at heavy load, less capacity can be extracted compared to a light load because of the higher impedance of an older battery versus a new one.

You can more easily manage an aged battery by integrating a fuel gauge IC into your battery-powered design. Along with the state-of-charge (SOC) data that many fuel gauges provide, modern fuel gauges such as Maxim ModelGauge™ m5 ICs also deliver parameters such as:

  • Available and reported remaining capacity
  • Battery resistance
  • Age
  • Age forecast
  • Cycles
  • Timer
  • Time-to-empty

Your customers’ expectations can dictate which pieces of information gets disclosed on the devices. Armed with these insights, customers can better manage their battery-powered device and grow to trust in your battery management strategy.

Let’s take a closer look at each of these parameters.

Available and Reported Remaining Capacity

The empty compensation feature of the ModelGauge m5 estimates the theoretical remaining capacity (RemCapMIX), assuming ideal battery conditions, and also the available capacity (RemCapAV), accounting for load, temperature, and age. Available capacity can change instantly with any change in load or temperature. However, this results in a sudden jump in the value, based on the load or temperature changes. For example, it can be confusing to see the available capacity jump up when the load simply changes from heavy to light, even though a charger isn’t connected. To alleviate this problem, reported capacity (RemCapREP) can be used to communicate the remaining capacity to the user interface. Reported capacity doesn’t change instantly as the available capacity does. On a load change, its trajectory simply re-aims for the same time-to-empty as estimated by the trajectory of the available capacity.

To build customer trust, include a fuel gauge IC in your battery-powered device

Battery Resistance

The resistance register contains the calculated value of the average internal resistance of the battery. This register accomplishes this by comparing the open-circuit voltage against the measure voltage over a long period of time while under load or while charging. This value trends up as the battery is used over time.


The age register in a fuel gauge is the percentage ratio of present full capacity compared to the original design capacity. This will typically trend down as the battery is used over time.

Cycle+ Age Forecast

Cycle+ Age Forecast estimates the number of cycles the consumer can get out of the battery during its lifetime. The ModelGauge m5 algorithm monitors the change in cell capacity over time and calculates the number of cycles it takes for the battery capacity to drop to a predefined threshold. This forecast can be used to plan for a timely battery replacement, or take other battery management actions to extend the life of the battery by dynamically changing the charging profile.


The cycles register maintains the total count of charge/discharge cycles that have occurred on the battery. It accumulates fractional as well as whole cycles, kind of like a car’s odometer.


A timer allows the fuel gauge to track the age of the battery in terms of absolute time since the IC wasfirst connected to the cell. As part of the learning function, some Maxim fuel gauges also periodically back up this information to the on-chip non-volatile memory. For others, the hostsystem can save this information periodically and restore it to the IC in case of a power loss.


Time-to-empty (TTE) under present load, as well as hypothetical load or power, is also useful. Before starting a high-load session, the system can query the fuel gauge to see whether the battery can support the expected runtime for that hypothetical session to be successful. This measure can be used to prevent unexpected crashes by preventing that high-load session from beginning, especially in a low-battery condition. The system can instead proactively take power management actions to only allow light-load sessions and, perhaps, also communicate to the consumer that the battery is too low to enable certain high-load functionality. 

Longer Runtime, Better Performance

A fuel gauge IC can offer other battery management capabilities to further enhance the user experience. For example, many Maxim fuel gauges include a feature called dynamic battery power, which enables better runtime by allowing optimal CPU performance. This capability accomplishes this by throttling the CPU just enough to keep the system from crashing. For example, in many single-cell battery applications, the system requires at least 3.3V to operate correctly. By configuring the fuel gauge for dynamic battery power, the system’s loads can be controlled or limited to stay within the battery’s capability and ensure that a minimum system voltage is not crossed until the battery is at a very low state, at which point the system can be gracefully shut down. So, the user gets extended runtime and can avoid unexpected crashes from battery undervoltage condition. Without a function like dynamic battery power, system makers are essentially left with the unsavory option of throttling down system performance in a blind manner and, thus, risking customer backlash.

Some Maxim fuel gauges also have programmable, high-speed current comparators that monitor and control peak loads before they crash the battery. When tripped, these comparators send an alert to the host system, which can then take an appropriate power management action to dial down the peak loads/spikes. The programmable threshold can be set below the battery protector limits that would otherwise trigger a hard battery shutdown unexpectedly. These comparators can also be used to ensure that the system is complying with the dynamic power recommendations that the fuel gauge has provided to the host system.

Customers appreciate clear battery information and also knowing about any potential performance trade-offs related to runtime and battery life. Fuel gauge ICs help you deliver valuable insights to customers, helping to build their trust in you.

Receive latest electronics news and products in your inbox
Weekly alerts and exclusive articles, products and free webinars
Your email will not be shared with anyone else